Skip to main content

Yusuke Narita Publications

Discussion Paper
Abstract

We obtain a necessary and sufficient condition under which random-coefficient discrete choice models such as the mixed logit models are rich enough to approximate any nonparametric random utility models across choice sets. The condition turns out to be very simple and tractable. When the condition is not satisfied and, hence, there exists a random utility model that cannot be approximated by any random-coefficient discrete choice model, we provide algorithms to measure the approximation errors. After applying our theoretical results and the algorithms to real data, we find that the approximation errors can be large in practice.

Management Science
Abstract

Many centralized school admissions systems use lotteries to ration limited seats at oversubscribed schools. The resulting random assignment is used by empirical researchers to identify the effects of schools on outcomes like test scores. I first find that the two most popular empirical research designs may not successfully extract a random assignment of applicants to schools. When are the research designs able to overcome this problem? I show the following main results for a class of data-generating mechanisms containing those used in practice: The first-choice research design extracts a random assignment under a mechanism if the mechanism is strategy-proof for schools. In contrast, the other qualification instrument research design does not necessarily extract a random assignment under any mechanism. The former research design is therefore more compelling than the latter. Many applications of the two research designs need some implicit assumption, such as large-sample approximately random assignment, to justify their empirical strategy.

Discussion Paper
Abstract

Democracy is widely believed to contribute to economic growth and public health in the 20th and earlier centuries. We find that this conventional wisdom is reversed in this century, i.e., democracy has persistent negative impacts on GDP growth during 2001-2020. This finding emerges from five different instrumental variable strategies. Our analysis suggests that democracies cause slower growth through less investment and trade. For 2020, democracy is also found to cause more deaths from Covid-19.

Proceedings of the National Academy of Sciences
Abstract

Randomized controlled trials (RCTs) enroll hundreds of millions of subjects and involve many human lives. To improve subjects’ welfare, I propose a design of RCTs that I call Experiment-as-Market (EXAM). EXAM produces a welfare-maximizing allocation of treatment-assignment probabilities, is almost incentive-compatible for preference elicitation, and unbiasedly estimates any causal effect estimable with standard RCTs. I quantify these properties by applying EXAM to a water-cleaning experiment in Kenya. In this empirical setting, compared to standard RCTs, EXAM improves subjects’ predicted well-being while reaching similar treatment-effect estimates with similar precision.

Discussion Paper
Abstract

Many countries face growing concerns that population aging may make voting and policy-making myopic. This concern begs for electoral reform to better reflect voices of the youth, such as weighting votes by voters' life expectancy. This paper predicts the effect of the counterfactual electoral reform on the 2016 U.S. presidential election. Using the American National Election Studies (ANES) data, I find that Hillary Clinton would have won the election if votes were weighted by life expectancy. I also discuss limitations due to data issues.

Econometrica
Abstract

A growing number of school districts use centralized assignment mechanisms to allocate school seats in a manner that reflects student preferences and school priorities. Many of these assignment schemes use lotteries to ration seats when schools are oversubscribed. The resulting random assignment opens the door to credible quasi-experimental research designs for the evaluation of school effectiveness. Yet the question of how best to separate the lottery-generated randomization integral to such designs from non-random preferences and priorities remains open. This paper develops easily-implemented empirical strategies that fully exploit the random assignment embedded in a wide class of mechanisms, while also revealing why seats are randomized at one school but not another. We use these methods to evaluate charter schools in Denver, one of a growing number of districts that combine charter and traditional public schools in a unified assignment system. The resulting estimates show large achievement gains from charter school attendance. Our approach generates efficiency gains over ad hoc methods, such as those that focus on schools ranked first, while also identifying a more representative average causal effect. We also show how to use centralized assignment mechanisms to identify causal effects in models with multiple school sectors.

OSZAR »